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Abstract

Neurodevelopment in the first 10 years of life is a critical time window during which mile-

stones that define an individual’s functional potential are achieved. Comprehensive multi-

modal neurodevelopmental monitoring is particularly crucial for socioeconomically

disadvantaged, marginalized, historically underserved and underrepresented communities

as well as medically underserved areas. Solutions designed for use outside the traditional

clinical environment represent an opportunity for addressing such health inequalities. In this

work, we present an experimental platform, ANNE EEG, which adds 16-channel cerebral

activity monitoring to the existing, USA FDA-cleared ANNE wireless monitoring platform

which provides continuous electrocardiography, respiratory rate, pulse oximetry, motion,

and temperature measurements. The system features low-cost consumables, real-time

control and streaming with widely available mobile devices, and fully wearable operation to

allow a child to remain in their naturalistic environment. This multi-center pilot study suc-

cessfully collected ANNE EEG recordings from 91 neonatal and pediatric patients at aca-

demic quaternary pediatric care centers and in LMIC settings. We demonstrate the
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practicality and feasibility to conduct electroencephalography studies with high levels of

accuracy, validated via both quantitative and qualitative metrics, compared against gold

standard systems. An overwhelming majority of parents surveyed during studies indicated

not only an overall preference for the wireless system, but also that its use would improve

their children’s physical and emotional health. Our findings demonstrate the potential for the

ANNE system to perform multimodal monitoring to screen for a variety of neurologic dis-

eases that have the potential to negatively impact neurodevelopment.

Author summary

Neurodevelopment refers to an ensemble of multifaceted processes by which humans

develop the neural pathways underlying age-appropriate functional potential. Monitoring

cerebral activity via scalp electroencephalography (EEG) can serve as a noninvasive and

sensitive tool to probe brain functioning and inform measures of neurodevelopment as

well as evaluate various disabilities and neurologic disease such as epilepsy–which affects

millions of children with a disproportionate prevalence in developing countries. At pres-

ent there is a lack of neurodevelopmental monitoring systems that feature both cerebral

and cardiopulmonary monitoring. We present a novel wireless monitoring system that

adds EEG measurements to an existing USA FDA-cleared wearable sensors platform that

measures cardiac activity, blood oxygenation, motion, and skin temperature. In this

paper, we demonstrate the system’s ability to record high-quality cerebral neonatal and

pediatric activity in a variety of clinical and research environments, including in a low-

middle income country (LMIC) setting. Moreover, this system paired with limb and chest

sensors, has the potential to perform clinical-grade comprehensive neurodevelopmental

monitoring in a child’s naturalistic environment. Potential use cases range from evaluat-

ing for neurologic disease at a medical clinic to brief at-home neurodevelopmental

screening.

Introduction

Neurodevelopment from birth to pre-adolescence is a sensitive period for attaining functional

and cognitive milestones. During this timeframe, cerebral volume increases four-fold [1] to

support structural and functional development occurring via various mechanisms such as neu-

rogenesis, pruning, and myelination [2,3]. The result of such processes enables the achieve-

ment of behavioral and cognitive milestones as well as downstream effects on metabolism and

organ development. Neurodevelopment can be adversely impacted by neurologic diseases

such as birth trauma leading to hypoxic ischemic encephalopathy, perinatal stroke, and epi-

lepsy. In particular, the latter is the most common chronic neurologic disorder affecting over

50 million people worldwide, over 40 million of whom live in developing countries and low-

middle income settings [4]. Up to 4% of all children have epilepsy, with the highest prevalence

in rural areas and developing countries [5]. Prompt seizure detection in infancy and childhood

is critical as untreated ongoing seizures correlate with adverse neurodevelopmental outcomes

[6].

While there are existing systems for objectively tracking neurodevelopment in terms of

structural and functional brain development, they all have significant limitations. Magnetic

resonance imaging (MRI) is used to measure cerebral structure and volume, both of which are
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hypothesized to be key markers of neurodevelopment [7]. However, there are numerous limi-

tations for their widespread and regular use, including their extremely high cost of approxi-

mately $1 million USD / Tesla [8] and specialized infrastructure needs for super-conducting

magnets. As a result, their prevalence per capita in low and middle income countries (LMICs)

are less than 1/50th than that of the US [9]. In recent years, more inexpensive and easier to

maintain low field systems [10] are more promising for LMIC adoption, though their uses to

date have been largely experimental [8,11] or proof-of-concept [10]. Electroencephalography

(EEG) has recently been shown to aid in measuring cerebral function in individuals with nor-

mal as well as adverse neurodevelopmental trajectories [12]. Specifically, multidimensional

features extracted from EEG have been shown to be sensitive markers for the adverse effects of

in-utero exposures such as prenatal maternal smoking [13] and alcohol use [14]. EEG is also

the gold standard in quantifying sleep cycles, which is a key marker of brain development in

preterm and term neonates and potentially across the lifespan [15]. However, current stan-

dard-of-care EEG monitoring systems are often not portable as they consist of wired attach-

ments to a base headbox unit and large bulky monitors. These cumbersome connections often

limit patient mobility and visibility by caregivers, impede clinical care, and limits the use of

such systems in naturalistic environments. There has been a recent emergence of wireless EEG

devices such as Rapid Response EEG (Ceribell, Palo Alto USA) for adults and Epilog (Epitel,

Salt Lake City USA) for research purposes, each with early experimental data [2,16–18]. How-

ever, these have a sub-standard number of electrodes (up to 10) and were not designed to meet

the unique anatomic and physiological considerations of neonates and children. Furthermore,

none meet current American Clinical Neurophysiology Society (ACNS) clinical guidelines for

neonate and infant cerebral monitoring, which recommend integration of non-EEG measure-

ments such as electrocardiography (EKG) and respiration [19]. Lastly, none of these systems

integrate with other cardiopulmonary and positional monitoring tools that provide key physi-

ological data to inform neurodevelopment.

There is an urgent need for advanced integrated mobile/portable systems that allows for

comprehensive, time synchronized multimodal measurements of neurodevelopment and

brain health, designed for use both in the pediatric population and amenable to LMIC settings.

To address these unmet needs, we present an experimental platform, ANNE EEG, which adds

16 channel high quality cerebral activity monitoring to the existing, FDA-cleared ANNE wire-

less monitoring platform which provides continuous EKG, respiratory rate, pulse oximetry,

motion, and temperature measurements [20]. This allows for the unified collection and storage

of multimodal physiologic data, allowing for the potential of advanced analytics to predict

neurodevelopment.

Results

Neurodevelopment system design and engineering

Fig 1 displays key aspects of the system’s sensor design. A four-layer flexible printed circuit

board is fabricated for the ANNE EEG sensor that consists of a stack-up of copper, polyimide,

coverlay, and soldermask. The sensor consists of the following; a system-on-a-chip (SoC,

ISP1807, Insight SIP); high-precision and low noise analog-front-ends (AFE) for a maximum

of 16 channels; and a power management unit for wireless charging and supplying power to

the on-board electronics with a rechargeable Li-polymer battery (230 mAh). The SoC controls

the two AFE with on-board low-noise PGAs and sigma delta ADCs to collect clinical grade

EEG data, where each channel samples at 1 kHz with 24-bit resolution and 0.28 μVrms input

noise. The sensor board is enclosed with a ruggedized plastic housing made of Acrylonitrile

butadiene styrene (ABS) with 16 channel connectors to standard EEG electrodes.
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Panel A of Fig 2 provides an exploded schematic view of the device to highlight the underly-

ing technology. ANNE EEG has a battery life of 8 hours between charges and a projected cost

of $1,000 USD to allow for cost-effective operation in LMIC environments. The device is fully

reusable. The electronics are enclosed with a ruggedized plastic housing, which supports up to

16 channels through standard clinical-grade EEG connectors. The housing also can be config-

ured to have a neck carrying device by connecting a strap to the housing. The wireless charger

is designed to charge up to two sensors at once through an inductive coupling at 13.56 MHz.

In addition, the sensor can support a time-synchronized wireless body sensor network with

ANNE Chest and ANNE Limb sensors for comprehensive monitoring.

Panel B of Fig 2 shows a schematic view of the system’s chest (top) and limb (bottom) mod-

ules. The chest module measures EKG, cardiac seismocardiogram (SCG), chest wall movement

for respiratory rate (RR), and skin temperature, sampled at 512, 416, 52, and 0.2 Hz, respec-

tively. Measurements are made via a biopotential AFE, a high-frequency three-axis inertial

measurement unit (IMU), and a clinical-grade thermometer. The limb sensor measures photo-

plethysmogram (PPG) and skin temperature, sampled at 256 and 0.2 Hz, respectively. These

are recorded via an integrated pulse oximetry module and a clinical-grade thermometer. Red

and infrared light-emitting diodes are employed to measure peripheral capillary oxygen satu-

ration (SpO2).

Fig 3A provides a comprehensive view of multimodal wireless vital sign measurements on a

patient. The chest, limb, and EEG units provide a wide variety of both directly measured and

derived clinical data. The EEG unit, via electroencephalography, can assess cerebral activity,

provide sleep staging, and detect epileptiform discharges. The chest unit detects skin and body

temperature, gathers electrocardiography data such as heart rate and bioimpedance, and

senses chest wall movement. The limb unit sensor provides peripheral oximetry and peripheral

arterial tonometry. This data can be time synchronized as depicted in Fig 2B to provide com-

prehensive multimodal monitoring. For instance, the presence of a sleep spindle on EEG sup-

ports that a child is in stage II sleep, which can be supported by concomitant measurements of

heart rate, respiratory rate, and limb movements.

Fig 1. Sensor block diagram of neurodevelopmental system. The sensor consists of a system-on-a-chip (SoC, ISP1807, Insight SIP), high-precision and low

noise analog-front-ends (AFE) for 16 channels, power management unit for wireless charging and supplying power to the on-board electronics with a 230mAh

rechargeable Li-polymer battery. The SoC controls the two AFE with on-board low-noise PGAs and sigma delta ADCs to collect clinical grade EEG data, where

each channel samples at 1 kHz with 24-bit resolution.

https://doi.org/10.1371/journal.pdig.0000291.g001
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Neurodevelopment system qualitative and quantitative data analysis

EEG data from a total of 91 subjects across multiple centers was analyzed (see: Materials and

Methods for study design and data collection). A bandpass filter of 1-70Hz with a notch filter

of 60Hz was applied for all EEG visualization figures in accordance with clinical standards

[21]. Fig 4 displays typical graphoelements of neonatal sleep activity measured by ANNE EEG.

Analysis of quiet and active stages of neonatal sleep has been shown to predict neurodevelop-

mental outcome [22]. Fig 4A displays features of quiet sleep obtained from recordings col-

lected in the HIC setting, and Fig 4B displays separate features identified in active sleep traces,

both acquired in the LMIC setting.

Fig 5 displays characteristic outputs of cerebral activity as concurrently measured both by

ANNE EEG and a clinical gold-standard EEG monitoring system. An atypical absence seizure

from a study patient is visualized both from a clinical standard longitudinal bipolar visualiza-

tion [23] of two representative channels (Fig 5A) and a longitudinal bipolar visualization of all

sixteen channels (Fig 5B). Data from each system was post-processed with a 1–70 Hz bandpass

filter with 60 Hz notch filter, which is standard clinical practice for EEG interpretation [24,25].

Both systems visualized 2.5–3.0 Hz stereotyped diffuse spike-wave activity with abrupt onset

and offset, all of which are key features of this seizure type. EEG visualization of the seizure

from each system was indistinguishable from one another.

Fig 2. Design and mechanical characterization of a wireless neurodevelopmental system for infants and children. (A) Schematic illustration and exploded

view of EEG module. (B) Schematic illustration of chest (top) and limb (bottom) devices.

https://doi.org/10.1371/journal.pdig.0000291.g002
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On visual inspection, concurrent outputs between the two systems were similar for all

patients, independent of their EEG findings. However, a few differences were noted. The

ANNE EEG system’s outputs displayed a slightly sharper contour to their waveforms, likely

owing to its higher sampling frequency (1000 Hz) vs that of the gold-standard system (512

Hz). In addition, at times there was some discordance in either phase or amplitude, likely due

to the gold standard and ANNE EEG electrodes being separate and spatially separated by

Fig 3. Continuous, wireless, and real-time neurological and cardiopulmonary monitoring via a time-synchronized sensor network. (A) Photograph of

ANNE EEG, chest and limb units on a 6 year old child with measured and derived metrics. (B) Visual representation of multimodal vital sign measurements.

Multimodal data from ANNE EEG, chest and limb devices; Electroencephalography (EEG), electrocardiography (EKG), photoplethysmography (PPG),

respiration, chest temperature, limb temperature, and seismography (SCG) over a 5 second interval. Sleep spindles are a marker of stage 2 sleep. S1 and S2 are

heart sounds indicating systole and diastole, respectively.

https://doi.org/10.1371/journal.pdig.0000291.g003
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approximately 1cm. The electrode differences resulted in disparities likely due to single elec-

trode artifact, variations in skin-electrode adhesion, or nonuniform effects of head movement

artifact.

Fig 4. Neonatal sleep with characteristic EEG graphoelements. (A) Quiet sleep obtained from a participant at Columbia University

Hospital (New York, USA). This snapshot displays a tracé alternant pattern, defined by alternating periods of short-duration, high-

voltage activity separated by bursts of< 50uV activity lasting up to 5 seconds (B) Active sleep obtained from a participant at

Stellenbosch University (Stellenbosch, South Africa) in the LMIC setting. Anterior dysrhythmias (blue box) are 50–100 uV sharp

waves lasting up to 200ms seen over the frontal regions. Enchoches frontales (red box) are 50-100uV broad diphasic transients, also

seen in active sleep.

https://doi.org/10.1371/journal.pdig.0000291.g004

PLOS DIGITAL HEALTH A wireless multimodal monitoring platform for infant and child neurodevelopment

PLOS Digital Health | https://doi.org/10.1371/journal.pdig.0000291 July 6, 2023 7 / 19

https://doi.org/10.1371/journal.pdig.0000291.g004
https://doi.org/10.1371/journal.pdig.0000291


Fig 5. Visual EEG comparison to gold-standard recording system. (A) Comparison of absence seizure between F4-C4 and F4’-C4’ channels

between gold standard and ANNE EEG, respectively (B) 16 channel comparison of absence seizure between gold standard and ANNE EEG.

https://doi.org/10.1371/journal.pdig.0000291.g005
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Quantitative data analysis was performed for the 30 subjects that comprised the validation study

cohort. Similar analysis for the other 61 subjects in the feasibility arm could not be performed due

to the lack of varied ages and control EEG data. For patients who fell asleep during EEG recording

or had epileptiform discharges, 30 minute epochs were identified via manual inspection that had

either continuous sleep or epileptiform discharges by a board-certified Child Neurologist (J.N.W.).

Specifically, two quantitative EEG measures, alpha-delta ratio, and spike count were performed.

Alpha-delta ratio is a validated marker of sleep [41,42]. Epileptiform spikes are a biomarker of sei-

zures and epilepsy [43,44]. Automated analysis for both metrics were performed via a previously

validated software package using MATLAB (Mathworks, California USA) software [45].

Relative power spectrum analysis was calculated for each channel in the validation study

cohort. Sleep epochs were chosen to minimize the effects of movement artifact. The same rep-

resentative 30 minute epochs of continuous sleep were used as in the alpha-delta ratio calcula-

tions. Power spectra for each of the 16 channels were divided into the following

physiologically relevant frequencies; delta (0.5 to 4 Hz), theta (4 to 8 Hz), alpha (8 to 13 Hz),

beta (13 to 30 Hz), and gamma (30Hz to 50Hz). Each of these frequency bands were then aver-

aged across all channels along with the total power for the epoch (Table 1). Boxplots were then

generated to compare relative delta ratio and total power between the subgroup with epilepti-

form discharges versus the subgroup without epileptiform discharges.

Fig 6 displays validation analyses via Bland-Altman and R-squared scatterplots (see: Methods

for statistical details). We demonstrate strong concordance both for alpha-delta ratio (Fig 6A and

6B) as well as spike count (Fig 6C and 6D). Bland Altman analysis for both metrics demonstrated

mean differences of very near zero and largely symmetric 95% confidence intervals. R-squared

scatterplots displayed alpha-delta ratio and spike count R2 coefficients of 0.98 and 0.99 respectively.

Fig 7 compares the distribution of EEG power (absolute broadband power and relative

delta frequency) in sleep without epileptiform spikes versus sleep with epileptiform spikes.

Table 1. Results of relative power spectrum for each frequency band in validation study.

Subject ID Age in years Delta Theta Alpha Beta Gamma Total Power in uV2

Sleep without epileptiform spikes

LCH-P001 0.5 0.75953 0.19845 0.02397 0.01277 0.00528 4.10834E+08

LCH-P005 1.5 0.91923 0.06977 0.00645 0.00380 0.00076 2.93549E+09

LCH-P007 10 0.64957 0.18292 0.09416 0.06202 0.01134 1.80218E+08

LCH-P008 17 0.48838 0.17911 0.17572 0.11038 0.04641 8.98731E+07

LCH-P009 14 0.75224 0.19950 0.03511 0.01161 0.00154 1.89937E+08

LCH-P010 9 0.54931 0.35681 0.04303 0.03898 0.01187 4.02739E+08

LCH-P013 11 0.56072 0.27892 0.09180 0.05916 0.00940 1.13181E+08

LCH-P016 4 0.85477 0.10433 0.02124 0.01785 0.00180 7.25192E+08

LCH-P017 15 0.49126 0.25712 0.16780 0.07438 0.00944 7.20335E+07

LCH-P018 10 0.74486 0.17667 0.05171 0.02524 0.00152 5.21557E+08

LCH-P019 14 0.68532 0.20421 0.07152 0.03695 0.00200 2.91378E+08

LCH-P021 18 0.50284 0.18431 0.23353 0.06997 0.00935 8.44352E+07

LCH-P027 1.5 0.75968 0.19476 0.03036 0.01296 0.00224 7.38864E+08

LCH-P029 0.75 0.86955 0.10952 0.01558 0.00479 0.00055 2.62775E+09

Sleep with epileptiform spikes

LCH-P024 6 0.71193 0.19078 0.06037 0.03317 0.00375 5.50290E+08

LCH-P025 4 0.85876 0.11556 0.01868 0.00647 0.00054 1.16730E+09

LCH-P026 6 0.78500 0.17510 0.02985 0.00936 0.00069 1.95387E+09

LCH-P030 1.5 0.76849 0.14070 0.05233 0.02963 0.00885 6.49197E+08

https://doi.org/10.1371/journal.pdig.0000291.t001
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These findings are concordant with prior studies [26,27] that showed an increase in both these

metrics for individuals with epilepsy.

In addition to successful EEG signal validation, key neurodevelopmental metrics were also

investigated. For the validation cohort without epileptiform activity in sleep, Fig 8 compares

their age versus distribution of EEG band power in all physiologic frequencies (delta, theta,

alpha, beta and gamma) via simple linear regression analysis. A strong negative correlation

was demonstrated between age and delta power, and a strong positive correlation was likewise

demonstrated between age and alpha power. These findings are concordant with what has pre-

viously been reported [28,29] in neurodevelopmental studies.

A cohort of families were surveyed about their experiences with the system as part of the

study. More than 95% of those surveyed (21 out of 22 respondents) stated that ANNE EEG

would positively impact the frequency of physical contact with their child, with over 80% also

stating that increased contact would positively impact both emotional health and emotional

attachment. Overall, over 86% (19 out of 22 respondents) preferred wireless EEG to conven-

tional EEG monitoring.

Fig 6. Quantitative EEG comparison data to gold-standard recording system. Data collection from study subjects with epilepsy. (A-B) Alpha-delta ratio is a validated

measure of sleep. Comparison of measured alpha-delta ratios with concurrent 30 minute EEG sleep samples from ANNE EEG and gold-standard system (A) Bland

Altman plot (B) Scatterplot with R-squared values. (C-D) Spikes are suggestive of epileptiform activity and are a biomarker of epilepsy. Comparison of log-transformed

spike counts with concurrent 30 minute EEG samples from ANNE EEG and gold-standard system (C) Bland Altman plot (D) R-squared plot.

https://doi.org/10.1371/journal.pdig.0000291.g006
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Fig 7. Effects of epileptiform spikes on EEG power spectra. Boxplots comparing validation study subjects in whom sleep was

recorded without epileptiform spikes versus subjects with epileptiform spikes in sleep (A) Comparison of total power,

demonstrating a trend towards increased power when spikes were present (B) Comparison of delta power ratio, demonstrating a

trend towards an increased delta ratio when spikes were present.

https://doi.org/10.1371/journal.pdig.0000291.g007
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Discussion

Neurodevelopment across the lifespan, in particular from birth to 10 years, is a key time period

for which brain maturation occurs with long-lasting effects. Comprehensive monitoring of

brain development, physical, and mental health is critical not only for the general population

Fig 8. Neurodevelopmental correlation of age with EEG power spectra. Linear regression analysis comparing age and the following frequency bands: (A)

Delta (0.5-4Hz), (B) Theta (4-8Hz), (C) Alpha (8-13Hz), (D) Beta (13-30Hz), (E) Gamma (30-50Hz). A strong negative correlation is demonstrated between

age and delta frequency. A strong positive correlation is demonstrated between age and alpha frequency.

https://doi.org/10.1371/journal.pdig.0000291.g008
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but in particular for socioeconomically disadvantaged groups [30] as a means of addressing

health inequalities throughout the human lifespan. EEG is a direct measurement of cerebral

activity that serves as a key marker of brain development [31]. Current wired, clinical-grade

EEG systems are large, cumbersome, and expensive, requiring specialized technicians to oper-

ate. While there exist some wireless EEG systems, none currently integrate with other vital

sign measurements or are designed for use in neonates and children. In fact, EEG by itself is

not sufficient to adequately track developmental milestones, as numerous large cohort studies

[2,32] use EEG as an adjunct to other measurements. For instance, heart rate variability has

been demonstrated to be reflective of attention to general stimuli [33,34] and faces [35] in

infants, which is a marker of neurodevelopment. At present, there does not currently exist a

wireless wearable system that measures cerebral, cardiopulmonary, and positional measure-

ments in an integrated fashion. The ANNE system not only accomplishes this but also provides

raw data outputs to best inform advanced analytics that may be helpful in predicting

neurodevelopment.

Beyond neurodevelopment, the ANNE system allows for true clinical grade electroencepha-

lography whose measurement parameters meet or exceed current standards [19], replacing

standard abdominal and respiratory belts, SpO2 sensor and ECG, but also adding other mea-

surements such as SCG, temperature, accelerometry that may serve as additional variables in

evaluating seizures or other conditions such as sleep apnea in high risk children, autism or

movement disorders [32,36,37].

We present an innovative comprehensive wireless neurodevelopment monitoring system

that adds neuronal activity measurement via EEG to previously validated chest and limb mod-

ules. Pilot studies at an academic quaternary pediatric care center demonstrate the practicality

and feasibility of ANNE EEG to conduct electroencephalography studies with high levels of

accuracy, validated via both quantitative and qualitative metrics, compared to the gold stan-

dard system. Furthermore, we also demonstrate the feasibility and scalability of the system for

use in neonates in the LMIC setting. Previous work has already illustrated the performance

and safety of the ANNE Chest and ANNE Limb sensors for cardiopulmonary monitoring in

the LMIC setting [20,38,39]. The system features low-cost consumables, real-time control and

streaming with widely available mobile devices (e.g. Android tablets), and fully wearable oper-

ation to allow a child to remain in their naturalistic environment. Potential use cases range

from evaluating for neurologic disease at a medical clinic to brief at-home neurodevelopmen-

tal screening. An overwhelming majority of parents surveyed during studies indicated not

only an overall preference for the wireless system, but also that its use would improve their

children’s physical and emotional health.

Our validation study has a few limitations that require further investigation prior to wide-

spread deployment, particularly in medically underserved regions. While 30 subjects is ade-

quate for validation of a novel EEG device validation [16] this is a relatively low number; we

intend to increase this within our own institution. We also intend to expand upon the feasibil-

ity studies performed at both HIC and LMIC settings with future iterations of the system.

Smaller form factors and electrode solutions that more specifically meet the needs of prema-

ture and ultra-low birth weight infants [39] would also be ideal for this vulnerable population.

While the power spectra trends displayed in Fig 7 were not statistically significant due to the

small subgroup sample size, results are consistent with prior literature investigating spectral

power in patients with epilepsy. We intend to investigate this trend further in future studies.

Future research investigations will validate all measurements of the multimodal monitoring

system in a time-synchronized fashion. Efforts will also look to add additional measurement

parameters and features based on feedback from medical care providers, such as an expanded

number of electrodes and an easier-to-use wearable electrode solution.
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Materials and methods

Study design and data collection

Ethical approval. The study and all experimental protocols were approved by the Institu-

tional Review Boards (IRB) of Lurie Children’s Hospital of Chicago (IRB 2020–3266), Colum-

bia University (IRB-AAAT2973), and Stellenbosch University (N21/03/034_Sub-study 1173).

The caregivers of all participants gave informed consent, and the studies were performed in

accordance with hospital wide regulations. Written informed consent from at least one parent

was given for each participant prior to sensor placement.

Participants and informed consent. We demonstrate performance, usability and satisfac-

tion of ANNE EEG, in a multi-center feasibility study as well as a single center validation

study. Table 2 shows demographic characteristics of all study participants, with ages ranging

from birth to 18 years.

In the single center validation study, the aim was to demonstrate signal quality equivalence

compared to current clinical EEG systems in a clinical cohort of 30 patients. In one patient,

ANNE chest and limb modules were also added as a proof-of-concept demonstration. Table 3

Table 2. Characteristics of study participants.

N = 91

Sex, n (%)

Male 49 (53.8)

Female 42 (46.2)

Neurodevelopmental age, n (%)

Neonate (0 to 28 days) 61 (67.0)

Infant (28 days to 2 years) 6 (6.6)

Child (2 years to 11 years) 16 (17.6)

Adolescent (12 years to 21 years) 8 (8.8)

https://doi.org/10.1371/journal.pdig.0000291.t002

Table 3. Characteristics of validation study participants and EEG findings.

N = 30

Median age, yrs (range) 7.5 (0.5, 18)

Sex, n (%)

Male 13 (43.3)

Female 17 (56.7)

Epilepsy Related Diagnosis, n (%)

Focal epilepsy syndromes (i.e. ESES1) 3 (10)

Genetic Syndrome (i.e. SCN1A, PRRT2 mutations) 4 (13.3)

Generalized Epilepsy syndromes (i.e. CAE2) 8 (26.6)

Structural brain abnormalities3 7 (23.3)

Other epilepsy syndromes4 8 (26.6)

EEG Findings, n (%)

Normal 17 (56.6)

Diffuse slowing 2 (6.6)

Epileptiform discharges 8 (26.6)

Seizures 3 (10)

1 Electrical Status Epilepticus of Sleep
2 Childhood Absence Epilepsy
3 Includes Hypoxic Ischemic Encephalopathy (HIE), meningitis, encephalitis, Tuberous Sclerosis Complex (TSC)
4 Includes Infantile Spasms (IS) and Lennox-Gastaut Syndrome (LGS)

https://doi.org/10.1371/journal.pdig.0000291.t003
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shows demographic characteristics of validation study participants. All the assessed partici-

pants had an epilepsy related diagnosis, ranging from genetic syndromes to structural brain

abnormalities such as cerebral injury from hypoxic ischemic encephalopathy. Recruitment

included patients ages 0–18 who presented to the Lurie Epilepsy Monitoring Unit (EMU) as

part of a clinically indicated 4-hour EEG study. There were no other exclusion criteria. Patients

were screened by a pediatric epileptologist (J.N.W.) through review of the electronic medical

record.

Data collection

At Columbia University Irving Medical Center, participants were recruited by a bilingual

research assistant from the Well Baby Nursery or Neonatal Intensive Care Unit (NICU) of

New York-Presbyterian Morgan Stanley Children’s Hospital. Exclusion criteria included if

there was a known underlying genetic condition or neonatal abstinence syndrome. Each

patient underwent EEG recording for approximately 30 minutes.

At Stellenbosch University, EEG recording was performed on neonates from the Bishop

Lavis Community Health Centre (CHC) born at or after 37 weeks gestational age. Exclusion

criteria included delivery by caesarian section, born with congenital anomalies, diagnosed

with neonatal abstinence syndrome or a 5 minute Apgar score of less than 7. EEG recording

for one hour each was performed near the time of birth and then a second instance at approxi-

mately one month (27–33) days of age. For the validation study at Lurie Children’s Hospital of

Chicago, EEG recording with the sensor was performed concurrently with the gold-standard

EEG system (Natus Xltek, Colorado USA) during clinically indicated appointments in the

Lurie Epilepsy Monitoring Unit (EMU). Skin checks per hospital protocol were performed

prior to each placement to ensure adequate skin integrity. Electrodes connected to the sensor

were attached by trained EEG technicians using ’prime’ positions of the standard 10–20 system

[40], approximately 1 cm behind the corresponding electrodes connected to the Lurie system.

Recording was performed for up to 4 hours, the full length of the clinically indicated hospital

recording. The sensor was placed in a backpack next to the patient for the duration of the

recording. EEG data from each system was downloaded to the European Data Format (EDF)

and anonymized. A total of 164 hours of EEG data was recorded by the ANNE systems across

all three centers.

Statistical analysis

Bland Altman plots [46] were generated to compare the means of measured alpha-delta ratios

and EEG spike counts over concurrent samples measured by the ANNE EEG and the gold-

standard system. Logarithmic transformation [47] was applied to EEG spike counts as a more

accurate comparison due to the wide range of spike counts across patients. These plots evalu-

ated bias between the mean differences and estimated a 95% interval of differences between

ANNE EEG and the gold standard alpha-delta ratio and EEG spike counts. Scatterplots, fitted

regression lines, and correlation coefficients of the ANNE EEG-derived alpha-delta ratio and

the log-transformed [47] number of EEG spikes versus the gold standard were also generated.

All statistical programming and analyses were performed with STATA version 15.1 (Stata-

Corp, College Station USA).

For the subgroup without epileptiform discharges, simple linear regression analysis was

used to determine the correlation between validation subject age and power spectra for each

band. The subgroup with epileptiform discharges was excluded from this specific analysis as

the aim was to analyze age as a primary variable in neurodevelopment without confounding

factors (such as epileptiform spikes) that would otherwise affect the EEG power spectra.
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